Developing a New HSR Switching Node (SwitchBox) for Improving Traffic Performance in HSR Networks

نویسندگان

  • Nguyen Xuan Tien
  • Jong Myung Rhee
چکیده

High availability is crucial for industrial Ethernet networks as well as Ethernet-based control systems such as automation networks and substation automation systems (SAS). Since standard Ethernet does not support fault tolerance capability, the high availability of Ethernet networks can be increased by using redundancy protocols. Various redundancy protocols for Ethernet networks have been developed and standardized, such as rapid spanning tree protocol (RSTP), media redundancy protocol (MRP), parallel redundancy protocol (PRP), high-availability seamless redundancy (HSR) and others. RSTP and MRP have switchover delay drawbacks. PRP provides zero recovery time, but requires a duplicate network infrastructure. HSR operation is similar to PRP, but HSR uses a single network. However, the standard HSR protocol is mainly applied to ring-based topologies and generates excessively unnecessary redundant traffic in the network. In this paper, we develop a new switching node for the HSR protocol, called SwitchBox, which is used in HSR networks in order to support any network topology and significantly reduce redundant network traffic, including unicast, multicast and broadcast traffic, compared with standard HSR. By using the SwitchBox, HSR not only provides seamless communications with zero switchover time in case of failure, but it is also easily applied to any network topology and significantly reduces unnecessary redundant traffic in HSR networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FHT: A Novel Approach for Filtering High-Availability Seamless Redundancy (HSR) Traffic

High-availability seamless redundancy (HSR) is a protocol for Ethernet networks that provides duplicated frames with zero recovery time in the event of any network component’s failure. It is suited for applications that demand high availability and a very short time-outs such as substation automation systems (SAS). However, HSR generates excessive unnecessary unicast frames and spreads them thr...

متن کامل

Enhanced Effective Filtering Approach (eEFA) for Improving HSR Network Performance in Smart Grids

The effective filtering approach (EFA) is one of the most effective approaches for improving the network traffic performance of high-availability seamless redundancy (HSR) networks. However, because EFA uses port locking (PL) for detecting nondestination doubly-attached nodes with HSR protocol (DANH) rings in HSR networks, it forwards the first sent frame to all DANH rings in the network. In ad...

متن کامل

A Comparison of Techniques for Reducing Unicast Traffic in HSR Networks

This paper investigates several existing techniques for reducing high-availability seamless redundancy (HSR) unicast traffic in HSR networks for substation automation systems (SAS). HSR is a redundancy protocol for Ethernet networks that provides duplicate frames for separate physical paths with zero recovery time. This feature of HSR makes it very suited for real-time and mission-critical appl...

متن کامل

A Combined Approach Effectively Enhancing Traffic Performance for HSR Protocol in Smart Grids

In this paper, we propose a very effectively filtering approach (EFA) to enhance network traffic performance for high-availability seamless redundancy (HSR) protocol in smart grids. The EFA combines a novel filtering technique for QuadBox rings (FQR) with two existing filtering techniques, including quick removing (QR) and port locking (PL), to effectively reduce redundant unicast traffic withi...

متن کامل

DVP: A Novel High-Availability Seamless Redundancy (HSR) Protocol Traffic-Reduction Algorithm for a Substation Automation System Network

The high-availability seamless redundancy (HSR) protocol, a potential candidate for substation automation system (SAS) networks, provides duplicated frame copies of each sent frame, with zero fault-recovery time. This means that even in the case of node or link failure, the destination node will receive at least one copy of the sent frame. Consequently, there is no network operation down time. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016